Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Med Vet Entomol ; 37(2): 316-329, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36543747

RESUMO

Triatoma maculata (Hemiptera, Reduviidae, Triatominae) occurs across dry-to-semiarid ecoregions of northern South America, where it transmits Trypanosoma cruzi, causative agent of Chagas disease. Using 207 field-caught specimens from throughout the species' range, mitochondrial(mt) DNA sequence data, and cytogenetics, we investigated inter-population genetic diversity and the phylogenetic affinities of T. maculata. Mitochondrial DNA sequence analyses (cytb and nd4) disclosed a monophyletic T. maculata clade encompassing three distinct geographic groups: Roraima formation (Guiana shield), Orinoco basin, and Magdalena basin (trans-Andean). Between-group cytb distances (11.0-12.8%) were larger than the ~7.5% expected for sister Triatoma species; the most recent common ancestor of these T. maculata groups may date back to the late Miocene. C-heterochromatin distribution and the sex-chromosome location of 45S ribosomal DNA clusters both distinguished Roraima bugs from Orinoco and Magdalena specimens. Cytb genealogies reinforced that T. maculata is not sister to Triatoma pseudomaculata and probably represents an early (middle-late Miocene) offshoot of the 'South American Triatomini lineage'. In sum, we report extensive genetic diversity and deep phylogeographic structuring in T. maculata, suggesting that it may consist of a complex of at least three sibling taxa. These findings have implications for the systematics, population biology, and perhaps medical relevance of T. maculata sensu lato.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Triatoma/genética , Filogenia , Doença de Chagas/veterinária , Trypanosoma cruzi/genética , DNA Mitocondrial/genética , Análise Citogenética/veterinária
2.
Artigo em Inglês | MEDLINE | ID: mdl-36479576

RESUMO

Triatoma costalimai is a little-known triatomine-bug species whose role as a vector of Chagas disease remains poorly understood. To address this gap, we conducted a comprehensive review of the literature and assessed the evidence base from a public-health perspective. We found 89 individual documents/resources with information about T. costalimai. DNA-sequence and cytogenetic data indicate that T. costalimai belongs, together with Triatoma jatai, in a distinct clade within the 'pseudomaculata group' of South American Triatoma. Triatoma costalimai is probably a narrow endemic of the Cerrado on the upper Tocantins River Basin and associated ranges/plateaus; there, the species thrives in the sandstone/limestone outcrops typical of the "Cerrado rupestre" (rocky-soil savanna) and "mata seca decídua calcária" (limestone-soil dry forest) phytophysiognomies. Wild T. costalimai appear to feed on whatever vertebrates are available in rocky outcrops, with lizards and rodents being most common. There is persuasive evidence that house invasion/infestation by T. costalimai has increased in frequency since the 1990s. The bugs often carry Trypanosoma cruzi, often defecate while feeding, have high fecundity/fertility, and, under overtly favorable conditions, can produce two generations per year. Current knowledge suggests that T. costalimai can transmit human Chagas disease in the upper Tocantins Basin; control-surveillance systems should 'tag' the species as a potentially important local vector in the Brazilian states of Goiás and Tocantins. Further research is needed to clarify (i) the drivers and dynamics of house invasion, infestation, and reinfestation by T. costalimai and (ii) the genetic structuring and vector capacity of the species, including its wild and non-wild populations.

3.
PLoS Negl Trop Dis ; 16(12): e0011011, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525465

RESUMO

BACKGROUND: Domestic dogs are primary reservoir hosts of Leishmania infantum, the agent of visceral leishmaniasis. Detecting dog infections is central to epidemiological inference, disease prevention, and veterinary practice. Error-free diagnostic procedures, however, are lacking, and the performance of those available is difficult to measure in the absence of fail-safe "reference standards". Here, we illustrate how a hierarchical-modeling approach can be used to formally account for false-negative and false-positive results when investigating the process of Leishmania detection in dogs. METHODS/FINDINGS: We studied 294 field-sampled dogs of unknown infection status from a Leishmania-endemic region. We ran 350 parasitological tests (bone-marrow microscopy and culture) and 1,016 qPCR assays (blood, bone-marrow, and eye-swab samples with amplifiable DNA). Using replicate test results and site-occupancy models, we estimated (a) clinical sensitivity for each diagnostic procedure and (b) clinical specificity for qPCRs; parasitological tests were assumed 100% specific. Initial modeling revealed qPCR specificity < 94%; we tracked the source of this unexpected result to some qPCR plates having subtle signs of possible contamination. Using multi-model inference, we formally accounted for suspected plate contamination and estimated qPCR sensitivity at 49-53% across sample types and dog clinical conditions; qPCR specificity was high (95-96%), but fell to 81-82% for assays run in plates with suspected contamination. The sensitivity of parasitological procedures was low (~12-13%), but increased to ~33% (with substantial uncertainty) for bone-marrow culture in seriously-diseased dogs. Leishmania-infection frequency estimates (~49-50% across clinical conditions) were lower than observed (~60%). CONCLUSIONS: We provide statistical estimates of key performance parameters for five diagnostic procedures used to detect Leishmania in dogs. Low clinical sensitivies likely reflect the absence of Leishmania parasites/DNA in perhaps ~50-70% of samples drawn from infected dogs. Although qPCR performance was similar across sample types, non-invasive eye-swabs were overall less likely to contain amplifiable DNA. Finally, modeling was instrumental to discovering (and formally accounting for) possible qPCR-plate contamination; even with stringent negative/blank-control scoring, ~4-5% of positive qPCRs were most likely false-positives. This work shows, in sum, how hierarchical site-occupancy models can sharpen our understanding of the problem of diagnosing host infections with hard-to-detect pathogens including Leishmania.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Cães , Animais , Doenças do Cão/diagnóstico , Sensibilidade e Especificidade , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Leishmania infantum/genética , Leishmaniose/diagnóstico , Leishmaniose/veterinária
5.
Mem Inst Oswaldo Cruz ; 117: e210130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830010

RESUMO

Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives' aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Idoso , América/epidemiologia , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/prevenção & controle , Vetores de Doenças , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Gravidez
6.
Mem. Inst. Oswaldo Cruz ; 117: e210130, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1386360

RESUMO

Chagas disease (CD) still imposes a heavy burden on most Latin American countries. Vector-borne and mother-to-child transmission cause several thousand new infections per year, and at least 5 million people carry Trypanosoma cruzi. Access to diagnosis and medical care, however, is far from universal. Starting in the 1990s, CD-endemic countries and the Pan American Health Organization-World Health Organization (PAHO-WHO) launched a series of multinational initiatives for CD control-surveillance. An overview of the initiatives' aims, achievements, and challenges reveals some key common themes that we discuss here in the context of the WHO 2030 goals for CD. Transmission of T. cruzi via blood transfusion and organ transplantation is effectively under control. T. cruzi, however, is a zoonotic pathogen with 100+ vector species widely spread across the Americas; interrupting vector-borne transmission seems therefore unfeasible. Stronger surveillance systems are, and will continue to be, needed to monitor and control CD. Prevention of vertical transmission demands boosting current efforts to screen pregnant and childbearing-aged women. Finally, integral patient care is a critical unmet need in most countries. The decades-long experience of the initiatives, in sum, hints at the practical impossibility of interrupting vector-borne T. cruzi transmission in the Americas. The concept of disease control seems to provide a more realistic description of what can in effect be achieved by 2030.

7.
Parasit Vectors ; 14(1): 492, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563255

RESUMO

BACKGROUND: Triatomine bugs transmit Chagas disease across Latin America, where vector control-surveillance is increasingly decentralized. Locally run systems often deal with highly diverse native-vector faunas-plus, in some areas, domestic populations of non-native species. Flexible entomological-risk indicators that cover native and non-native vectors and can support local decision-making are therefore needed. METHODS: We present a local-scale entomological-risk score ("TriatoScore") that leverages and builds upon information on the ecology-behavior and distribution-biogeography of individual triatomine bug species. We illustrate our approach by calculating TriatoScores for the 417 municipalities of Bahia state, Brazil. For this, we (i) listed all triatomine bug species recorded statewide; (ii) derived a "species relevance score" reflecting whether each species is native/non-native and, if native, whether/how often it invades/colonizes dwellings; (iii) mapped each species' presence by municipality; (iv) for native vectors, weighted presence by the proportion of municipal territory within ecoregions occupied by each species; (v) multiplied "species relevance score" × "weighted presence" to get species-specific "weighted scores"; and (vi) summed "weighted scores" across species to get municipal TriatoScores. Using standardized TriatoScores, we then grouped municipalities into high/moderate/low entomological-risk strata. RESULTS: TriatoScores were higher in municipalities dominated by dry-to-semiarid ecoregions than in those dominated by savanna-grassland or, especially, moist-forest ecoregions. Bahia's native triatomines can maintain high to moderate risk of vector-borne Chagas disease in 318 (76.3%) municipalities. Historical elimination of Triatoma infestans from 125 municipalities reduced TriatoScores by ~ 27% (range, 20-44%); eight municipalities reported T. infestans since Bahia was certified free of Trypanosoma cruzi transmission by this non-native species. Entomological-risk strata based on TriatoScores agreed well with Bahia's official disease-risk strata, but TriatoScores suggest that the official classification likely underestimates risk in 42 municipalities. Of 152 municipalities failing to report triatomines in 2006-2019, two and 71 had TriatoScores corresponding to, respectively, high and moderate entomological risk. CONCLUSIONS: TriatoScore can help control-surveillance managers to flexibly assess and stratify the entomological risk of Chagas disease at operationally relevant scales. Integrating eco-epidemiological, demographic, socioeconomic, or operational data (on, e.g., local-scale dwelling-infestation or vector-infection frequencies, land-use change and urbanization, housing conditions, poverty, or the functioning of control-surveillance systems) is also straightforward. TriatoScore may thus become a useful addition to the triatomine bug control-surveillance toolbox.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/fisiologia , Triatominae/fisiologia , Trypanosoma cruzi/fisiologia , Animais , Brasil/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Entomologia , Meio Ambiente , Qualidade Habitacional , Humanos , Insetos Vetores/classificação , Insetos Vetores/parasitologia , Fatores de Risco , Triatominae/classificação , Triatominae/parasitologia
8.
PLoS One ; 16(5): e0252071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34015050

RESUMO

Attalea palms provide primary habitat to Rhodnius spp., vectors of Trypanosoma cruzi. Flying from palms, these blood-sucking bugs often invade houses and can infect people directly or via food contamination. Chagas disease (CD) risk may therefore increase when Attalea palms thrive near houses. For example, Attalea dominate many deforested landscapes of eastern Amazonia, where acute-CD outbreaks are disturbingly frequent. Despite this possible link between deforestation and CD risk, the population-level responses of Amazonian Attalea and their resident Rhodnius to anthropogenic landscape disturbance remain largely uncharted. We studied adult Attalea palms in old-growth forest (OGF), young secondary forest (YSF), and cattle pasture (CP) in two localities of eastern Amazonia. We recorded 1856 Attalea along 10 transects (153.6 ha), and detected infestation by Rhodnius spp. in 18 of 280 systematically-sampled palms (33 bugs caught). Distance-sampling models suggest that, relative to OGF, adult Attalea density declined by 70-80% in CP and then recovered in YSF. Site-occupancy models estimate a strong positive effect of deforestation on palm-infestation odds (ßCP-infestation = 4.82±1.14 SE), with a moderate decline in recovering YSF (ßYSF-infestation = 2.66±1.10 SE). Similarly, N-mixture models suggest that, relative to OGF, mean vector density sharply increased in CP palms (ßCP-density = 3.20±0.62 SE) and then tapered in YSF (ßYSF-density = 1.61±0.76 SE). Together, these results indicate that disturbed landscapes may support between ~2.5 (YSF) and ~5.1 (CP) times more Attalea-dwelling Rhodnius spp. per unit area than OGF. We provide evidence that deforestation may favor palm-dwelling CD vectors in eastern Amazonia. Importantly, our landscape-disturbance effect estimates explicitly take account of (i) imperfect palm and bug detection and (ii) the uncertainties about infestation and vector density arising from sparse bug data. These results suggest that incorporating landscape-disturbance metrics into the spatial stratification of transmission risk could help enhance CD surveillance and prevention in Amazonia.


Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Rhodnius/patogenicidade , Trypanosoma cruzi/patogenicidade , Animais , Ecossistema
10.
PLoS One ; 16(4): e0248628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886550

RESUMO

Correct identification of triatomine bugs is crucial for Chagas disease surveillance, yet available taxonomic keys are outdated, incomplete, or both. Here we present TriatoDex, an Android app-based pictorial, annotated, polytomous key to the Triatominae. TriatoDex was developed using Android Studio and tested by 27 Brazilian users. Each user received a box with pinned, number-labeled, adult triatomines (33 species in total) and was asked to identify each bug to the species level. We used generalized linear mixed models (with user- and species-ID random effects) and information-theoretic model evaluation/averaging to investigate TriatoDex performance. TriatoDex encompasses 79 questions and 554 images of the 150 triatomine-bug species described worldwide up to 2017. TriatoDex-based identification was correct in 78.9% of 824 tasks. TriatoDex performed better in the hands of trained taxonomists (93.3% vs. 72.7% correct identifications; model-averaged, adjusted odds ratio 5.96, 95% confidence interval [CI] 3.09-11.48). In contrast, user age, gender, primary job (including academic research/teaching or disease surveillance), workplace (including universities, a reference laboratory for triatomine-bug taxonomy, or disease-surveillance units), and basic training (from high school to biology) all had negligible effects on TriatoDex performance. Our analyses also suggest that, as TriatoDex results accrue to cover more taxa, they may help pinpoint triatomine-bug species that are consistently harder (than average) to identify. In a pilot comparison with a standard, printed key (370 tasks by seven users), TriatoDex performed similarly (84.5% correct assignments, CI 68.9-94.0%), but identification was 32.8% (CI 24.7-40.1%) faster on average-for a mean absolute saving of ~2.3 minutes per bug-identification task. TriatoDex holds much promise as a handy, flexible, and reliable tool for triatomine-bug identification; an updated iOS/Android version is under development. We expect that, with continuous refinement derived from evolving knowledge and user feedback, TriatoDex will substantially help strengthen both entomological surveillance and research on Chagas disease vectors.


Assuntos
Doença de Chagas/epidemiologia , Insetos Vetores , Aplicativos Móveis , Triatominae , Adulto , Animais , Brasil/epidemiologia , Doença de Chagas/transmissão , Feminino , Humanos , Insetos Vetores/anatomia & histologia , Insetos Vetores/classificação , Masculino , Pessoa de Meia-Idade , Triatominae/anatomia & histologia , Triatominae/classificação , Adulto Jovem
11.
Parasit Vectors ; 14(1): 195, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832518

RESUMO

BACKGROUND: Triatomine bugs, the vectors of Chagas disease, associate with vertebrate hosts in highly diverse ecotopes. It has been proposed that occupation of new microhabitats may trigger selection for distinct phenotypic variants in these blood-sucking bugs. Although understanding phenotypic variation is key to the study of adaptive evolution and central to phenotype-based taxonomy, the drivers of phenotypic change and diversity in triatomines remain poorly understood. METHODS/RESULTS: We combined a detailed phenotypic appraisal (including morphology and morphometrics) with mitochondrial cytb and nuclear ITS2 DNA sequence analyses to study Rhodnius ecuadoriensis populations from across the species' range. We found three major, naked-eye phenotypic variants. Southern-Andean bugs primarily from vertebrate-nest microhabitats (Ecuador/Peru) are typical, light-colored, small bugs with short heads/wings. Northern-Andean bugs from wet-forest palms (Ecuador) are dark, large bugs with long heads/wings. Finally, northern-lowland bugs primarily from dry-forest palms (Ecuador) are light-colored and medium-sized. Wing and (size-free) head shapes are similar across Ecuadorian populations, regardless of habitat or phenotype, but distinct in Peruvian bugs. Bayesian phylogenetic and multispecies-coalescent DNA sequence analyses strongly suggest that Ecuadorian and Peruvian populations are two independently evolving lineages, with little within-lineage phylogeographic structuring or differentiation. CONCLUSIONS: We report sharp naked-eye phenotypic divergence of genetically similar Ecuadorian R. ecuadoriensis (nest-dwelling southern-Andean vs palm-dwelling northern bugs; and palm-dwelling Andean vs lowland), and sharp naked-eye phenotypic similarity of typical, yet genetically distinct, southern-Andean bugs primarily from vertebrate-nest (but not palm) microhabitats. This remarkable phenotypic diversity within a single nominal species likely stems from microhabitat adaptations possibly involving predator-driven selection (yielding substrate-matching camouflage coloration) and a shift from palm-crown to vertebrate-nest microhabitats (yielding smaller bodies and shorter and stouter heads). These findings shed new light on the origins of phenotypic diversity in triatomines, warn against excess reliance on phenotype-based triatomine-bug taxonomy, and confirm the Triatominae as an informative model system for the study of phenotypic change under ecological pressure .


Assuntos
Adaptação Fisiológica , Triatominae/genética , Animais , Evolução Biológica , Ecossistema , Equador , Humanos , Insetos Vetores/anatomia & histologia , Insetos Vetores/classificação , Insetos Vetores/genética , Insetos Vetores/fisiologia , Peru , Fenótipo , Filogenia , Seleção Genética , Triatominae/anatomia & histologia , Triatominae/classificação , Triatominae/fisiologia
13.
Parasit Vectors ; 13(1): 352, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665032

RESUMO

BACKGROUND: Aedes aegypti and Culex quinquefasciatus are the main urban vectors of arthropod-borne viruses causing human disease, including dengue, Zika, or West Nile. Although key to disease prevention, urban-mosquito control has met only limited success. Alternative vector-control tactics are therefore being developed and tested, often using entomological endpoints to measure impact. Here, we test one promising alternative and assess how three such endpoints perform at measuring its effects. METHODS: We conducted a 16-month, two-arm, cluster-randomized controlled trial (CRCT) of mosquito-disseminated pyriproxyfen (MD-PPF) in central-western Brazil. We used three entomological endpoints: adult-mosquito density as directly measured by active aspiration of adult mosquitoes, and egg-trap-based indices of female Aedes presence (proportion of positive egg-traps) and possibly abundance (number of eggs per egg-trap). Using generalized linear mixed models, we estimated MD-PPF effects on these endpoints while accounting for the non-independence of repeated observations and for intervention-unrelated sources of spatial-temporal variation. RESULTS: On average, MD-PPF reduced adult-mosquito density by 66.3% (95% confidence interval, 95% CI: 47.3-78.4%); Cx. quinquefasciatus density fell by 55.5% (95% CI: 21.1-74.8%), and Ae. aegypti density by 60.0% (95% CI: 28.7-77.5%). In contrast, MD-PPF had no measurable effect on either Aedes egg counts or egg-trap positivity, both of which decreased somewhat in the intervention cluster but also in the control cluster. Egg-trap data, therefore, failed to reflect the 60.0% mean reduction of adult Aedes density associated with MD-PPF deployment. CONCLUSIONS: Our results suggest that the widely used egg-trap-based monitoring may poorly measure the impact of Aedes control; even if more costly, direct monitoring of the adult mosquito population is likely to provide a much more realistic and informative picture of intervention effects. In our CRCT, MD-PPF reduced adult-mosquito density by 66.3% in a medium-sized, spatially non-isolated, tropical urban neighborhood. Broader-scale trials will be necessary to measure MD-PPF impact on arboviral-disease transmission.


Assuntos
Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Piridinas/farmacologia , Aedes/efeitos dos fármacos , Animais , Brasil , Culex/efeitos dos fármacos , Humanos , Inseticidas/farmacologia
14.
PLoS Negl Trop Dis ; 13(10): e0007766, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600199

RESUMO

BACKGROUND: Triatoma brasiliensis, a triatomine-bug vector of Chagas disease, evolved in the semiarid Caatinga, where it occupies rocky outcrops, shrubby cacti, and human dwellings. Dwellings and rocks are considered high-quality microhabitats for this saxicolous species, whereas cacti probably represent secondary, lower-quality microhabitats. This 'microhabitat-quality hierarchy' hypothesis predicts that T. brasiliensis populations occupying dwellings or rocks should endure harsh environmental conditions better than their cactus-living relatives. METHODS/FINDINGS: We tested this prediction by comparing T. brasiliensis infestation (proportion of microhabitats with bugs), density (bugs per microhabitat), and crowding (bugs per infested microhabitat) in dwellings, rocks, and cacti sampled before and during the extreme drought that ravaged the Caatinga in 2012-2016. We used random-intercepts generalized linear mixed models to account for microhabitat spatial clustering and for variations in bug-catch effort; we assessed model performance and computed model-averaged effect estimates using Akaike's information criterion. Pre-drought infestation was similar across microhabitat types; during the drought, infestation remained stable in dwellings and rocks but dropped in cacti. Pre-drought bug density declined from dwellings to rocks to cacti; an additional decline associated with the drought was largely comparable across microhabitats, albeit perhaps somewhat larger in cacti. Finally, pre-drought bug crowding was higher in dwellings than in rocks or cacti and changed little during the drought-possibly with a downward trend in dwellings and an upward trend in cacti. CONCLUSIONS: Triatoma brasiliensis populations fared better in dwellings and rocks than in cacti during extreme drought. Estimates of microhabitat and drought effects on infestation, density, and crowding suggest that only a few cacti (versus many rocks and dwellings) represent good-quality habitat under such extremely harsh conditions. Our findings provide empirical support to the microhabitat-quality hierarchy hypothesis, and imply that T. brasiliensis can endure extreme climate by exploiting high-quality microhabitats, whether wild or man-made, in the semiarid Caatinga.


Assuntos
Clima , Secas , Triatoma , Animais , Brasil , Doença de Chagas/transmissão , Ecossistema , Humanos , Insetos Vetores
15.
J Med Entomol ; 56(4): 1019-1026, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31220293

RESUMO

Rhodnius prolixus Stål, a major Chagas disease vector, often colonizes in houses, whereas its sister species, Rhodnius robustus Larrousse genotype I, does not colonize in houses and has little medical relevance. Factors potentially underlying this crucial difference remain largely uncharted. The 'microclimate-adaptation hypothesis' notes that R. prolixus is adapted to the dry microclimate of small-crowned Copernicia palms, whereas R. robustus I exploits the high-moisture microclimate of large-crowned Attalea and Acrocomia. Hence, R. prolixus, but not R. robustus I, would be (pre)adapted to the relatively dry microclimate typical of man-made habitats. This hypothesis predicts that, while severe dehydration should harm both species similarly, R. prolixus should withstand moderate-to-mild dehydration stress better than R. robustus I. To test this prediction, we compared fitness metrics of genotyped R. prolixus and R. robustus I kept at 28°C and under severe (20% relative humidity, RH), moderate (40% RH), or mild dehydration stress (75% RH). Egg-hatching success increased with decreasing dehydration stress in R. robustus I (0% → 19% → 100%), but was high across treatments in R. prolixus (78% → 100% → 100%). Both species underwent high, early mortality under severe dehydration; under moderate and mild stress, R. prolixus experienced less mortality and survived longer than R. robustus I. Our results suggest that adaptation to distinct palm-crown microclimates may partly underlie the so far unexplained differences in house-colonization ability among Rhodnius Stål species. Experimental replication across additional species/populations will be required to further probe this adaptive hypothesis-which, if supported, may also provide insight into the likely responses of Chagas disease vectors to climate change.


Assuntos
Desidratação , Rhodnius/fisiologia , Estresse Fisiológico , Animais , Especificidade da Espécie
16.
Parasit Vectors ; 12(1): 305, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208458

RESUMO

BACKGROUND: Rhodnius montenegrensis (Triatominae), a potential vector of Chagas disease, was described after R. robustus-like bugs from southwestern Amazonia. Mitochondrial cytb sequence near-identity with sympatric R. robustus (genotype II) raised doubts about the taxonomic status of R. montenegrensis, but comparative studies have reported fairly clear morphological and genetic differences between R. montenegrensis and laboratory stocks identified as R. robustus. Here, we use a transcriptome-based approach to investigate this apparent paradox. RESULTS: We retrieved publicly-available transcriptome sequence-reads from R. montenegrensis and from the R. robustus stocks used as the taxonomic benchmark in comparative studies. We (i) aligned transcriptome sequence-reads to mitochondrial (cytb) and nuclear (ITS2, D2-28S and AmpG) query sequences (47 overall) from members of the R. prolixus-R. robustus cryptic-species complex and related taxa; (ii) computed breadth- and depth-coverage for the 259 consensus sequences generated by these alignments; and, for each locus, (iii) appraised query sequences and full-breadth-coverage consensus sequences in terms of nucleotide-sequence polymorphism and phylogenetic relations. We found evidence confirming that R. montenegrensis and R. robustus genotype II are genetically indistinguishable and, hence, implying that they are, in all likelihood, the same species. Furthermore, we found compelling genetic evidence that the benchmark 'R. robustus' stocks used in R. montenegrensis description and in later transcriptome-based comparisons are in fact R. prolixus, although likely mixed to some degree with R. robustus (probably genotype II, a.k.a. R. montenegrensis). CONCLUSIONS: We illustrate how public-domain genetic/transcriptomic data can help address challenging issues in disease-vector systematics. In our case-study, taxonomic confusion apparently stemmed from the misinterpretation of sequence-data analyses and misidentification of taxonomic-benchmark stocks. More generally, and together with previous reports of mixed and/or misidentified Rhodnius spp. laboratory colonies, our results call into question the conclusions of many studies (on morphology, genetics, physiology, behavior, bionomics or interactions with microorganisms including trypanosomes) based on non-genotyped 'R. prolixus' or 'R. robustus' stocks. Correct species identification is a prerequisite for investigating the factors that underlie the physiological, behavioral or ecological differences between primary domestic vectors of Chagas disease, such as R. prolixus, and their sylvatic, medically less-relevant relatives such as R. robustus (s.l.) including R. montenegrensis.


Assuntos
Filogenia , Rhodnius/classificação , Transcriptoma , Animais , Brasil , Doença de Chagas , Insetos Vetores/classificação , Especificidade da Espécie
18.
Adv Parasitol ; 99: 265-344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29530308

RESUMO

In this chapter, we review and update current knowledge about the evolution, systematics, and biogeography of the Triatominae (Hemiptera: Reduviidae)-true bugs that feed primarily on vertebrate blood. In the Americas, triatomines are the vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Despite declining incidence and prevalence, Chagas disease is still a major public health concern in Latin America. Triatomines occur also in the Old World, where vector-borne T. cruzi transmission has not been recorded. Triatomines evolved from predatory reduviid bugs, most likely in the New World, and diversified extensively across the Americas (including the Caribbean) and in parts of Asia and Oceania. Here, we first discuss our current understanding of how, how many times, and when the blood-feeding habit might have evolved among the Reduviidae. Then we present a summary of recent advances in the systematics of this diverse group of insects, with an emphasis on the contribution of molecular tools to the clarification of taxonomic controversies. Finally, and in the light of both up-to-date phylogenetic hypotheses and a thorough review of distribution records, we propose a global synthesis of the biogeography of the Triatominae. Over 130 triatomine species contribute to maintaining T. cruzi transmission among mammals (sometimes including humans) in almost every terrestrial ecoregion of the Americas. This means that Chagas disease will never be eradicated and underscores the fact that effective disease prevention will perforce require stronger, long-term vector control-surveillance systems.


Assuntos
Doença de Chagas/transmissão , Insetos Vetores/classificação , Filogenia , Triatominae/classificação , Animais , Ásia , Doença de Chagas/parasitologia , Humanos , América Latina , Trypanosoma cruzi
19.
Sci Rep ; 8(1): 151, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317702

RESUMO

Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

20.
J Med Entomol ; 54(6): 1771-1774, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29106640

RESUMO

Triatoma costalimai Verano & Galvão, a little-known vector of Trypanosoma cruzi Chagas, occupies rocky environments in the Brazilian Cerrado and occasionally infests man-made habitats. Entomological surveillance records show that T. costalimai occurs fairly often inside and around houses in south-eastern Tocantins, Brazil, with 859 specimens reported in 2005-2014. Most adults were caught indoors, and breeding colonies were found inside and around houses. Trypanosoma cruzi was detected in 13.7% of 839 bugs. These data suggest that T. costalimai can contribute to T. cruzi transmission in human environments, underscoring the need for long-term entomological-epidemiological surveillance wherever native Chagas disease vectors occur.


Assuntos
Insetos Vetores/parasitologia , Triatoma/parasitologia , Trypanosoma cruzi/isolamento & purificação , Animais , Brasil , Doença de Chagas/transmissão , Feminino , Habitação/estatística & dados numéricos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...